807 research outputs found

    UBVJHKLM photometry and modeling of R Coronae Borealis

    Get PDF
    We present the results of UBVJHKLM photometry of R CrB spanning the period from 1976 to 2001. Studies of the optical light curve have shown no evidence of any stable harmonics in the variations of the stellar emission. In the L band we found semi-regular oscillations with the two main periods of ~3.3 yr and 11.9 yr and the full amplitude of ~0.8 mag and ~0.6 mag, respectively. The colors of the warm dust shell (resolved by Ohnaka et al. 2001) are found to be remarkably stable in contrast to its brightness. This indicates that the inner radius is a constant, time-independent characteristic of the dust shell. The observed behavior of the IR light curve is mainly caused by the variation of the optical thickness of the dust shell within the interval \tau(V)= 0.2-0.4. Anticorrelated changes of the optical brightness (in particular with P ~ 3.3 yr) have not been found. Their absence suggests that the stellar wind of R CrB deviates from spherical symmetry. The light curves suggest that the stellar wind is variable. The variability of the stellar wind and the creation of dust clouds may be caused by some kind of activity on the stellar surface. With some time lag, periods of increased mass-loss cause an increase in the dust formation rate at the inner boundary of the extended dust shell and an increase in its IR brightness. We have derived the following parameters of the dust shell (at mean brightness) by radiative transfer modeling: inner dust shell radius r_in ~ 110 R_*, temperature T_dust(r_in) ~ 860 K, dust density \rho_dust(r_in) ~ 1.1x10^{-20} g cm^-3, optical depth \tau(V) ~ 0.32 at 0.55 micron, mean dust formation rate [dM/dt]_dust ~ 3.1x10^-9 M_sun / yr, mass-loss rate [dM/dt]_gas ~ 2.1x10^-7 M_sun / yr, size of the amorphous carbon grains <(~) 0.01 micron, and B-V ~ -0.28.Comment: 9 pages, 6 figures, accepted for publication in A&

    The Cepheid Phase Lag Revisited

    Get PDF
    We compute the phase lags between the radial velocity curves and the light curves Ī”Ī¦1=Ļ•1Vrāˆ’Ļ•1mag\Delta \Phi_1= \phi^{V_r}_1 - \phi^{mag}_1 for classical Cepheid model sequences both in the linear and the nonlinear regimes. The nonlinear phase lags generally fall below the linear ones except for high period models where they lie above, and of course for low pulsation amplitudes where the two merge. The calculated phase lags show good agreement with the available observational data of normal amplitude Galactic Cepheids. The metallicity has but a moderate effect on the phase lag, while the mass-luminosity relation and the parameters of the turbulent convective model (time-dependent mixing length) mainly influence the modal selection and the period, which is then reflected in the period -- Ī”Ī¦1\Delta \Phi_1 diagram. We discuss the potential application of this observable as a discriminant for pulsation modes and as a test for ultra-low amplitudes (ULA) pulsation.Comment: 11 pages, 8 figures, accepted for publication in ApJ, minor revisions in the text and figures, (black and white version available from 2nd author's website

    The Shape and Scale of Galactic Rotation from Cepheid Kinematics

    Get PDF
    A catalog of Cepheid variables is used to probe the kinematics of the Galactic disk. Radial velocities are measured for eight distant Cepheids toward l = 300; these new Cepheids provide a particularly good constraint on the distance to the Galactic center, R_0. We model the disk with both an axisymmetric rotation curve and one with a weak elliptical component, and find evidence for an ellipticity of 0.043 +/- 0.016 near the Sun. Using these models, we derive R_0 = 7.66 +/- 0.32 kpc and v_circ = 237 +/- 12 km/s. The distance to the Galactic center agrees well with recent determinations from the distribution of RR Lyrae variables, and disfavors most models with large ellipticities at the solar orbit.Comment: 36 pages, LaTeX, 10 figure

    Classical Cepheid Pulsation Models: IX. New Input Physics

    Full text link
    We constructed several sequences of classical Cepheid envelope models at solar chemical composition (Y=0.28,Z=0.02Y=0.28, Z=0.02) to investigate the dependence of the pulsation properties predicted by linear and nonlinear hydrodynamical models on input physics. To study the dependence on the equation of state (EOS) we performed several numerical experiments by using the simplified analytical EOS originally developed by Stellingwerf and the recent analytical EOS developed by Irwin. Current findings suggest that the pulsation amplitudes as well as the topology of the instability strip marginally depend on the adopted EOS. We also investigated the dependence of observables predicted by theoretical models on the mass-luminosity (ML) relation and on the spatial resolution across the Hydrogen and the Helium partial ionization regions. We found that nonlinear models are marginally affected by these physical and numerical assumptions. In particular, the difference between new and old models in the location as well as in the temperature width of the instability strip is on average smaller than 200 K. However, the spatial resolution somehow affects the pulsation properties. The new fine models predict a period at the center of the Hertzsprung Progression (PHP=9.65P_{HP}=9.65āˆ’-9.84 days) that reasonably agree with empirical data based on light curves (PHP=10.0Ā±0.5P_{HP}=10.0\pm 0.5 days; \citealt{mbm92}) and on radial velocity curves (PHP=9.95Ā±0.05P_{HP}=9.95\pm 0.05 days; \citealt{mall00}), and improve previous predictions by Bono, Castellani, and Marconi (2000, hereinafter BCM00).Comment: 35 pages, 7 figures. Accepted for publication in the Astrophysical Journa

    Extended envelopes around Galactic Cepheids III. Y Oph and alpha Per from near-infrared interferometry with CHARA/FLUOR

    Full text link
    Unbiased angular diameter measurements are required for accurate distances to Cepheids using the interferometric Baade Wesselink method (IBWM). The precision of this technique is currently limited by interferometric measurements at the 1.5% level. At this level, the center-to-limb darkening (CLD) and the presence of circumstellar envelopes (CSE) seem to be the two main sources of bias. The observations we performed aim at improving our knowledge of the interferometric visibility profile of Cepheids. In particular, we assess the systematic presence of CSE around Cepheids in order determine accurate distances with the IBWM free from CSE biased angular diameters. We observed a Cepheid (Y Oph) for which the pulsation is well resolved and a non-pulsating yellow supergiant (alpha Per) using long-baseline near-infrared interferometry. We interpreted these data using a simple CSE model we previously developed. We found that our observations of alpha Per do not provide evidence for a CSE. The measured CLD is explained by an hydrostatic photospheric model. Our observations of Y Oph, when compared to smaller baseline measurements, suggest that it is surrounded by a CSE with similar characteristics to CSE found previously around other Cepheids. We have determined the distance to Y Oph to be d=491+/-18 pc. Additional evidence points toward the conclusion that most Cepheids are surrounded by faint CSE, detected by near infrared interferometry: after observing four Cepheids, all show evidence for a CSE. Our CSE non-detection around a non-pulsating supergiant in the instability strip, alpha Per, provides confidence in the detection technique and suggests a pulsation driven mass-loss mechanism for the Cepheids.Comment: accepted for publication in Ap

    Metabolomics should be deployed in the identification and characterization of gene-edited crops

    Get PDF
    Abstract Gene editing techniques are currently revolutionizing biology allowing far greater precision than previous mutagenic and transgenic approaches. They are becoming applicable to a wide range of plant species and biological processes. Gene editing can rapidly improve a range of crop traits including disease resistance, abiotic stress tolerance, yield, nutritional quality and additional consumer traits. Unlike transgenic approaches, however, it is not facile to forensically detect gene-editing events at the molecular level, as no foreign DNA exists in the elite line. These limitations in molecular detection approaches are likely to focus more attention on the products generated from the technology, than the process per se. Rapid advances in sequencing and genome assembly increasingly facilitate genome sequencing as a means of characterizing new varieties generated by gene editing techniques. Nevertheless, subtle edits such as single base changes or small deletions may be difficult to distinguish from normal variation within a genotype. Given these emerging scenarios, downstream ā€˜omicsā€™ technologies reflective of edited affects, such as metabolomics, need to be utilized in a more prominent manner to fully assess compositional changes in novel foodstuffs. To achieve this goal, metabolomics or ā€œnon-targeted metabolite analysisā€ needs to make significant advances to deliver greater representation across the metabolome. With the emergence of new edited crop varieties we advocate; (i) concerted efforts in the advancement of ā€˜omicsā€™ technologies such as metabolomics and (ii) redress the use of the technology in the regulatory assessment for metabolically-engineered biotech crops

    Polaris B, an optical companion of Polaris (alpha UMi) system: atmospheric parameters, chemical composition, distance and mass

    Full text link
    We present an analysis of high-resolution spectroscopic observations of Polaris B, the optical companion of the Polaris Ab system. The star has a radial velocity V_r of -16.6km/s to -18.9km/s, and a projected rotational velocity vsini=110 km/s. The derived atmospheric parameters are: Teff=6900K; logg=4.3; V_t=2.5km/s. Polaris B has elemental abundances generally similar to those of the Cepheid Polaris A (Usenko et al. 2005a), although carbon, sodium and magnesium are close to the solar values. At a spectral type of F3V Polaris B has a luminosity of 3.868L_sun, an absolute magnitude of +3.30mag, and a distance of 109.5pc. The mass of the star is estimated to be 1.39M_sun, close to a mass of 1.38+/-0.61M_sun for the recently-resolved orbital periods companion Polaris Ab observed by Evans et al. (2007).Comment: 6 pages, 3 figures, 1 tabl

    Analysis of subcellular metabolite levels of potato tubers (Solanum tuberosum) displaying alterations in cellular or extracellular sucrose metabolism

    Get PDF
    The expression of a heterologous invertase in potato tubers (Solanum tuberosum) in either the cytosol or apoplast leads to a decrease in total sucrose content and to an increase in glucose. Depending on the targeting of the enzyme different changes in phenotype and metabolism of the tubers occur: the cytosolic invertase expressing tubers show an increase in the glycolytic flux, accumulation of amino acids and organic acids, and the appearance of novel disaccharides; however, these changes are not observed when the enzyme is expressed in the apoplast [Roessner etĀ al. (2001). Plant Cell, 13, 11-29]. The analysis of these lines raised several questions concerning the regulation of compartmentation of metabolites in potato tubers. In the current study we addressed these questions by performing comparative subcellular metabolite profiling. We demonstrate that: (i) hexoses accumulate in the vacuole independently of their site of production, but that the cytosolic invertase expression led to a strong increase in the cytosolic glucose concentration and decrease in cytosolic sucrose, whereas these effects were more moderate in the apoplastic expressors; (ii) three out of four of the novel compounds found in the cytosolic overexpressors accumulate in the same compartment; (iii) despite changes in absolute cellular content the subcellular distribution of amino acids was invariant in the invertase overexpressing tubers. These results are discussed in the context of current models of the compartmentation of primary metabolism in heterotrophic plant tissues
    • ā€¦
    corecore